Dari persamaan kuadrat $ x^{2}+3x+1=0$ kita peroleh;
- $x_{1}+x_{2}=-\dfrac{b}{a}=-\dfrac{3}{1}=-3$
- $ x_{1} \cdot x_{2}= \dfrac{c}{a}= \dfrac{1}{1}=1 $
Persamaan kuadrat yang akar-akarnya $\alpha=2+\dfrac{x_{2}}{x_{1}}$ dan $\beta=2+\dfrac{x_{1}}{x_{2}}$ adalah $x^{2}-\left (\alpha+\beta\right )x+\left (\alpha \cdot \beta \right ) =0$.
$\begin{align}
\alpha+\beta & = 2+\dfrac{x_{2}}{x_{1}}+2+\dfrac{x_{1}}{x_{2}} \\
& = 4+\dfrac{x_{1}^{2}+x_{2}^{2}}{x_{1} x_{2}} \\
& = 4+\dfrac{\left( x_{1}+x_{2} \right)^{2}-2x_{1} x_{2}}{x_{1} x_{2}} \\
& = 4+\dfrac{\left( -3 \right)^{2}-2(1)}{1} \\
& = 4+9-2=11
\end{align}$
$\begin{align}
\alpha \cdot \beta & = \left( 2+\dfrac{x_{2}}{x_{1}} \right) \left( 2+\dfrac{x_{1}}{x_{2}} \right) \\
& = 4+ \dfrac{2x_{1}}{x_{2}}+\dfrac{2x_{2}}{x_{1}}+1 \\
& = 5+ 2 \left( \dfrac{ x_{1}}{x_{2}}+\dfrac{ x_{2}}{x_{1}} \right) \\
& = 5+ 2 \left( \dfrac{x_{1}^{2}+x_{2}^{2}}{x_{1} x_{2}} \right) \\
& = 5+ 2 \left( 9-2 \right) \\
& = 5+14=19
\end{align}$
$\begin{align}
x^{2}-\left (\alpha+\beta\right )x+\left (\alpha \cdot \beta \right ) & = 0 \\
x^{2}-11x+19 & = 0
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(A)\ x^{2}-11x+19=0$