Untuk menyelesaikan soal diatas kita coba dengan memisalkan $1-x^{2}=m$, karena $x \to -1$ maka $m \to 0$.
$\begin{align}
& \underset{x \to -1}{lim} \dfrac{sin(1-x^{2})\ cos (1-x^{2})}{x^{2}-1} \\
& = \underset{m \to 0}{lim} \dfrac{sin\ m\ cos\ m}{-m} \\
& = \underset{m \to 0}{lim}\ cos\ m \cdot \underset{m \to 0}{lim} \dfrac{sin\ m}{-m} \\
& = cos\ 0 \cdot -1 \\
& = 1 \cdot -1 =-1
\end{align}$
$\therefore$ Pilihan yang sesuai $(B)\ -1$